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Abstract-An analysis based on the integral method is presented for the solution of mass transfer- 
controlled bubble growth during a rapid decompression of a liquid-gas solution. Predicted results are in 
very good agreement with experimental measurements on an ethyl alcohol-CO, solution at 25 “C and 
initial pressures of 0.44-1.12MPa. An outline of the way in which the bubble growth model could be 
combined with a bubble nucleation model to predict void fractions in one-dimensional two-phase flow 
passages is given. Specific results for bubble growth and void fraction calculations are presented for the 
flow of monoethanolamine-CO2 solution at an initial pressure of 8.8 MPa and 150°C through a single- 

stage turbine and a five-stage reverse pump. 

1. INTRODUCTION 
THE STUDY in this paper was motivated by the desire 
to estimate void fractions between the inlet and 
outlet of various designs of hydraulic power recovery 
turbines. The liquids handled by these turbines, mono- 
ethanolamine and diethanolamine being typical 
examples, are at high pressures exceeding 10 MPa at 
the inlet and contain a high concentration of dissolved 
gases such as CO2 and H,S. As such liquids pass 
through the turbine, each fluid particle experiences a 
rapid pressure drop in time intervals typically ranging 
from 20 to 300ms. This rapid decompression sets up 
a substantial concentration difference between the 
bulk of the liquid and the liquid-gas interface of any 
gas bubbles which may be present. The diffusion of 
gas from the liquid bulk into these gas bubbles causes 
them to grow and increase the void fraction. In 
addition, the gas bubbles grow as a result of the 
pressure drop itself. The analysis of the diffusion- 
controlled growth of gas bubbles is but one aspect of 
a complete model for the prediction of void fraction. 
Other elements of the model involve the mechanism 
of bubble generation, and a priori knowledge of the 
pressure-time history observed by the flowing fluid. 
For the former, a number of results such as the bubble 
frequency and the number of favorable sites for bubble 
generation as reported in the literature of nucleate 
boiling is used. For the latter, a pressure-time history 
is assumed a priori. But in principle, after the void 
fraction distribution between inlet and outlet of the 
fluid passage has been calculated, an iterative pro- 
cedure could be used to recalculate the pressure-time 
history. 

The main emphasis in the present paper will be on 
the bubble growth model in a rapid decompression 

for liquids containing large amounts of dissolved 
gases and the experimental verification of the model. 
Numerous papers have been published on bubble 
growth on both heat transfer-controlled and diffusion- 
controlled cases. The underlying conservation equa- 
tions are described in detail in the classic paper by 
Striven [ 11. Arpaci et al. [2] have studied the dynam- 
ics of gas vapor bubbles in binary systems and have 
considered the combined effect of mass and heat 
transfer. The liquid pressure pm, however, was treated 
as constant in their study. Cha and Henry [3] have 
presented a solution of the diffusion equation in 
spherical coordinates valid for cases in which the 
convection set up by the growth of the bubble is 
negligible. This tacity implies that the decompression 
occurs over a relatively long time interval. The results 
that they present and the experimental data which 
they use for comparison are both for cases where the 
decompression time is of the order of 40s. In the 
practical situations of interest in this study, convection 
effects are not negligible. Rosner and Epstein [4] 
present a method of solution of the diffusion equation 
based on integral methods which takes into account 
the effect of convection. While it is possible to employ 
numerical methods of solution of the diffusion equ- 
ation, their method was deemed sufficiently accurate 
for the objectives of the present study. In the following 
sections, the basic equations underlying the model 
and the method of solution are described. Results 
obtained in the application of the model to particular 
situations are then presented and compared to exper- 
imental results. An outline of the way the method 
may be combined with a bubble generation model 
and a pressure-time history to predict void fractions 
in one-dimensional flow is also presented. 
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NOMENCLATURE 

A solid surface area in contact with fluid Y dimensionless bubble radius. 
b supersaturation parameter 
C concentration of dissolved gas Greek symbols 
D diffusion coefficient a dimensionless parameter defined by 

Db bubble departure diameter equation (24) 

/” 

function defined by equation (18) B dimensionless parameter defined by 
bubble departure frequency equation (28) 

H Henry’s constant defined by equation 6 concentration boundary layer thickness 

(15) ? variable defined by equation (29) 
N number of nucleation sites per unit area V kinematic viscosity of liquid 
P dimensionless pressure P solution density 

p,, normal stress a surface tension 

Ps gas pressure inside bubble T dimensionless time. 

P” vapor pressure of liquid 
pArn ambient pressure of liquid Subscripts 

Q* volume flow rate of gas 1 time or section where a bubble is 
R bubble radius generated 

R, gas constant e exit 

R initial bubble radius g gas 
T temperature i initial 
t time rr radial direction 

t, residence time W gas-liquid interface 
u radial component of liquid velocity co liquid bulk. 
V dummy variable of integration 
X ratio of concentration boundary layer Superscripts 

thickness to radius differentiation with respect to time. 

2. MATHEMATICAL MODEL 

Although many of the equations presented below 
are the same as those used in refs. [l-4], there are 
sufficient major differences such as the assumption of 
a variable gas density, the inclusion of the convection 
effect of the growing bubble on mass transfer rate, GAS BUBBLE 

the use of a more general concentration profile in the 
mass transfer boundary layer, and a more accurate 
expression for the mass transfer boundary layer thick- 
ness to warrant a complete presentation of the govern- FIG. 1. Geometry and the coordinate system for a gas bubble 
ing equations. in a liquid-gas solution. 

Assuming the bubble to be spherical in shape 
throughout its growth period, the governing equations 

The gas density pn is assumed to obey the perfect gas 

in spherical coordinates are as follows (see Fig. 1). 
law 

Continuity equation for the liquid phase 
ps=Jk 

RJU 
(4) 

u(r) = R’u(R)/r*. 

Overall mass balance 

(1) 
Momentum equation. With the only non-zero vel- 

ocity component being the radial velocity u(r) in 
spherical coordinates, the momentum equation has 
the form 

= 4nRZp(d - u(R)). (2) au ,+u2!~‘dp,-2vd’” 
ar p ar ar2 (3 

Substitution of equation (2) in equation (1) yields 
where P,, is the normal stress component given by 

u(r) = -$ R2d - &&R’p,) 1 . (3) P,, = pg + py - g. (6) 
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Integration of equation (5) from r = R to 03 and use 
of equation (6) gives the following equation relating 
the gas pressure inside the bubble to the ambient 
instantaneous liquid pressure surrounding the bubble 

Pg = PLm _p,+g 

+(,-p,)[Rd+(i+$)d,+4$] 

-(;+f&R&($+$)R,-y. (7) 

Equation (7) is the complete extended Rayleigh equa- 
tion. It reduces to various more simplified forms 
used by other authors if the relevant simplifying 
assumptions are made. The effects due to viscous, 
surface tension, and liquid inertia have been shown 
by Birkhoff et al. [S] to be negligible provided that 
the initial bubble size is not extremely small . For the 
range of conditions covered in the present study, 
pLm(t) is the dominant term. After determination of 
R as a function oft, the total contribution of viscous, 
surface tension and inertia terms was estimated and 
turned out to be less than 1% of pLm(t). Therefore, 
we adopt these assumptions and the additional one 
that the liquid vapor pressure pv is much smaller than 
the gas pressure pp, the result is the simple equation 

Pg = PL&). (8) 

In the particular application in this paper interest is 
focused on bubble sizes of 10-3-10-4m in diameter 
initially in equilibrium at liquid pressures of at least 
10MPa dropping rapidly to l-2 MPa in less than 
1.0s. The dominant term under the stated condition 
is pLm(t) given in equation (8). The use of equation 
(8), however, is purely a matter of convenience. In 
principle, if a particular application warrants a more 
accurate solution, the full equation (7) may be used 
at each stage of an iterative procedure to obtain pp 
as a function of time. 

Mass diffusion equation. The equation governing 
the variation of the dissolved gas concentration in the 
liquid surrounding the bubble is 

ac x+u(r)$=$i r2$ r>R. 
( > 

(9) 

Equating the rate of increase of the mass trapped in 
the bubble to the mass flow rate at the boundary in 
terms of the concentration gradient, one obtains 

The boundary conditions for the diffusion equation 
are: 

at r = R, 

atr-+co, 

at t = 0, 

at t = 0, 

c = c, 

c-*c, 

C = Cm,r > R 

R = Ri. 

(11) 

(12) 

(13) 

(14) 

Furthermore, it is assumed that at the interface 
between the gas and the liquid, thermodynamic equi- 
librium exists and that the equilibrium follows Henry’s 
law 

C, = Hp, (15) 

Examination of solubility data for gas-liquid systems 
of the present study indicated that equation (15) could 
be used with a suitable value of H to express the 
relation between C, and pc Following Rosner and 
Epstein [4], it is assumed that the transition from the 
concentration C, in the liquid bulk to C, at r = R 
takes place in a boundary layer of thickness 6 sur- 
rounding the bubble. Assuming a concentration pro- 
file of the form 

4[1-?y, RlrlR+G (16) 

0, rzR+6 

and essentially retracing the steps outlined in ref. [4], 
one can show that 

2 

a; + ; -F=O 0 0 (17) 

where F is given by the relation 

F =s+ +($I. (18) 

Let X = (6/R) and solve the quadratic equation (17) 
to obtain 

x = 2[J(l + F) - 11. (19) 

In the above development equation (19) is preferable 
to that used by Rosner and Epstein [4] since the 
assumption 6/R<< 1 is not necessary. 

Using equation (16), the concentration gradient at 
r = R is obtained 

ac ( > ar,=, = -(C,-Cm) f+i . ( > (20) 

Substitution of equation (20) in equation (10) yields 
after some simplification 

Even at the high pressures considered in the present 
investigation C, <<p so that p/(p - C,) z 1. 

To simplify the equations, introduce the dimension- 
less variables: 

(22) 

t 
?=t (23) 

e 

tL= 
3DHR&, 

Ri2 
(24) 
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PL&) P(7) = - 
PI.m(O) 

(25) 

t1 

71 =t (26) 
e 

PI = P(71) (27) 

j=HR,T, (28) 

f/=7,+ Y(LI + 1) (29) 

C 
b=Hp,,o (30) 

Equation (21) may now be integrated from t = t, to 
t and cast in terms of the above dimensionless 
variables to give 

- y) Y(r,,rj)( 1 + &)d”]. (31) 

Equation (31) is an integral equation governing the 
growth of a gas bubble of initial radius Ri born at 
time ti in a pressure field following the pressure-time 
history given by the function pLm(t). An assumed 
solution for Y is substituted on the right-hand side of 
equation (31) and a new value obtained for Y(T,,T). 
The procedure is repeated until satisfactory conver- 
gence. It was found that if one uses the value of Ydue 
to just the pressure change effect and multiply that 
value by a factor slightly larger than 1, say 1.1, the 
procedure converges within 2-3 iterations. At each 
step X is calculated from equation (19) with F given 

by 

F = f’(7) - PlWY3(7,,7) 

B(b - P(7)) ’ 

3. THEORETICAL RESULTS 

Figure 2 shows a typical pressure-time history 
experienced by a liquid particle as it passes through 
a five-stage reverse pump used to recover power from 
a stream of high pressure liquid such as monoethanol- 
amine. The initial pressure is about 8.8 MPa and the 
temperature is 150 “C. The residence time of the liquid 
in the machine is approximately 340ms. The stream 
at the inlet contains a large concentration of dissolved 
C02. Henry’s constant H and the diffusion coefficient 
D are estimated to have the values 

H = 1.2 x 10-4m-’ 

D = 1.0 x 10-8m2s-1. 

Bubble growth histories calculated by using the math- 
ematical model presented in the previous section are 
shown in Figs. 2 and 3 for initial radii of 4 x 10e5 
and 1.0 x 10-4m, respectively. In each figure, growth 

0.0 80. 160. 240. 320. 400. 

TIME t, milliseconds 

FIG. 2. Typical pressure variation in a five-stage reverse 
pump. 

0.L 
0.0 0.2 0.4 0.6 0.6 1 .o 

DIMENSIONLESS TIME, t/t e 

FIG. 3. Growth of bubbles generated at various locations 
with an initial radius of 4 x 10W5m, t, = 340ms. 

histories are shown for bubbles generated at 7 = 0, 
0.3, 0.6 and 0.9. Two important observations may 
be made regarding these results. First, for bubbles 
generated near the inlet (small values of 7) the growth 
is initially very slow but accelerates as the bubble 
travels downstream. The reason for this behavior is 
that as the bubble travels downstream the pressure 
drops causing the concentration difference of the 
dissolved gas in the bulk and that at the liquid-gas 
interface to increase rapidly. The contribution of the 
pressure drop itself in causing the bubble to grow 
even in the absence of mass transfer is also greatest 
near the outlet region. For bubbles generated near 
the outlet, the concentration difference is already large 
causing rapid mass transfer-controlled bubble growth. 
Second, the growth of bubbles is much faster for 
smaller bubbles than for large bubbles. The main 
reason for this phenomenon is the thinner mass 
transfer boundary layer thickness associated with 
bubbles of smaller initial radius. We now turn to 
similar results for a single-stage power recovery tur- 
bine with a residence time of only 20ms for the fluid 
particles. 
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0.0 0.2 0.4 0.6 0.8 1.0 

DIMENSIONLESS TIME, t/t e 

FIG. 4. Growth of bubbles generated at various locations 
with an initial radius of 1 x 10W4m, t, = 340ms. 

TIME t. milliseconds 

FIG. 5. Typical pressure variation for a single-stage turbine. 

8. 

6. 
cj- 
a 

0.1 
0.0 0.2 0.4 0.6 0.8 1.0 

DIMENSIONLESS TIME, the 

FIG. 6. Growth of bubbles generated at various locations 
with an initial radius of 4 x low5 m, t, = 20 ms. 

Figure 5 shows the pressure-time history used in 
the bubble growth calculations for a single-stage high 
speed power recovery turbine. Figures 6 and 7 show 
the bubble growth history for initial radii of 
4.0 x lo- ’ and 1.0 x 10m4 m, respectively. Trends are 
similar to those shown in Figs. 3 and 4 for the 340ms 
residence time. An additional observation may now 
be made, however, by a comparison of the two sets 
of results. The bubble growth ratios for the 20ms 
residence time are much smaller than the correspond- 
ing ones for 340ms residence time. This is a direct 

0.0 0.2 0.4 0.6 0.8 1.0 

DIMENSIONLESS TIME, t/t e 

FIG. 7. Growth of bubbles generated at various locations 
with an initial radius of 1 x 10e4m, t. = 20ms. 
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FIG. 8. Schematic diagram of test chamber for bubble growth 
experiments. 

result of the importance of mass transfer-controlled 
bubble growth which is larger for the larger residence 
time. The equilibrium bubble sizes must be identical 
for the two cases because initial and final pressures 
are the same. 

4. EXPERIMENTAL VERIFICATION OF THE 
BUBBLE GROWTH MODEL 

Figure 8 shows the test chamber of the apparatus 
used for the experimental verification of the bubble 
growth theory presented above. The chamber is 
cylindrical in shape with a diameter of 0.2 and a 
height of 0.3 m. It was fitted with a quick release valve 
at the top, a safety valve, and a vent. At the bottom 
of the chamber, a charging valve was connected to a 
doughnut shaped distributor made of a porous metal. 
An injection needle was fitted at the bottom of 
the chamber and passing through the center of the 
doughnut shaped distributor in such a manner that 
its tip was visible through three transparent windows 
installed on the side walls. Two of the transparent 
windows were used for lighting the test chamber 
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FIG. 9. Comparison of theoretical and experimental bubble 
growth histories. Ri = 1.2 x 10m4m, pi = 0.44MPa, 

T= 25 “C, ethyl alcohol-CO, solution. 

during the experiment, while the third was used for 
fitting a high-speed movie camera. Thermocouples 
and pressure transducers were installed at the top 
and the bottom of the chamber. The signal from the 
pressure transducer was stored in an oscilloscope for 
subsequent data reduction. Pure ethyl alcohol-CO, 
saturated solution was used in all the tests because 
of the good solubility of CO, in alcohol. 

The test procedure consisted of filling the chamber 
with ethyl alcohol and then saturating it with CO1 
by connecting the distributor to a bottle of CO1 and 
adjusting the pressure to the desired test pressure (0.44, 
0.78, and 1.12MPa). The porous metal distributor 
created a large number of small bubbles resulting in 
rapid (4 h) saturation times. The system was allowed 
to come to equilibrium for a period of 1 day. Any gas 
trapped in the upper portions of the chamber was 
then released through the vent and additional liquid 
was forced into the chamber to leave a minimal 
amount of undissolved gas in it. This was necessary 
for achieving short duration (50-120ms) pressure 
relief. A single stream of bubbles was then injected 
into the chamber through the injection needle and 
the quick release valve was opened. A flash of light 
indicated the start of the event which was recorded 
by a high-speed camera at a speed of 3000 frames per 
second. Following the processing of the movie, it was 
projected on a large screen and the bubble diameter 
was measured from the first frame for every thirtieth 
frame. The known speed of the camera then allowed 
determinations of bubble radius ratio as a function 
of time. 

Figure 9 shows a comparison of the results of the 
experiment at an initial pressure of 0.44 MPa, 25 “C, 
and an initial radius of 1.2 x 10e4m with the predic- 
tions of the theoretical model. In the theoretical 
calculation, values of H = 5.3 x 10e4 m-i and 

D = 3.4 x 10-gm2s-L were used. The pressure vari- 
ation during the test is shown as the curve marked 
p/pi. The curve marked (p/pi)- l/3 shows the expected 
bubble growth due to pressure drop alone with zero 
mass transfer. The solid curve shows the theoretically 
predicted bubble growth history including the effect 
of mass transfer which may be observed to be quite 
significant. The measured data is shown by the 
symbols and is in excellent agreement with the pre- 
dicted results. In particular, the slow growth of 
bubbles in the initial period followed by a rapid 
growth near the end of the decompression is borne 
out by the experiment. Experiments at other pressures 
(0.78 and 1.12 MPa) produced similar results. 

5. CALCULATION OF VOID FRACTION IN ONE- 
DIMENSIONAL FLOW 

In this section, only a brief account will be given 
of the method by which the results of the bubble 
growth may be used to estimate the void fraction 
at various sections in a one-dimensional two-phase 
situation. A more comprehensive paper on this subject 
is in preparation which will be published elsewhere. 

The following assumptions will be made to relate 
the void volume flow rate to the bubble growth model. 

(1) The two-phase flow through the passage is 
homogeneous. 

(2) The pressure distribution as seen by a flowing 
particle is known between inlet and outlet. 

(3) The flow is steady with a specified total mass 
flow rate and inlet void fraction. 

(4) The gas volume flow rate at any cross section 
of the passage originates from the following two 
sources: 

(a) growth of bubbles existing at the inlet; 
(b) growth of bubbles generated at all solid 

surfaces in contact with the fluid and situ- 
ated upstream of the desired section. 

Homogeneous nucleation in the bulk of the liquid 
will be neglected since this type of nucleation was not 
observed during the experimental verification of the 
bubble growth model. The last assumption in our 
model is given below. 

(5) All bubbles existing at the inlet or generated at 
the walls are of uniform radius Ri. 

The contribution of bubbles generated at an element 
of wall area dA situated upstream of a section to the 
gas volume flow rate at that section is then 

d(i, = (NJ. ;nR’ dA. 
( > 

The total void volume flow rate is obtained by 
integrating equation (33) and adding the result to the 
void volume flow rate due to bubbles existing at the 
inlet. The growth of each bubble between its point of 
generation and the section at which void volume flow 
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DIMENSIONLESS TIME, t/t e 

FIG. 10. Comparison of bubble dynamics and equilibrium 
void fractions, t, = 340ms, Ri = 1 x 10e4m, monoethanol- 

amine-CO, solution. Inlet void fraction = 0.07. 
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FIG. 11. Comparison of bubble dynamics and equilibrium 
void fractions, t. = 20ms, R, = 1 x 10w4m, monoethanol- 

amine-CO* solution. Inlet void fraction = 0.07. 

rate is being calculated is found by using the bubble 
growth model. 

Figures 10 and 11 show the variation of void 
fraction between inlet and outlet for 340 and 20ms 
residence times, respectively. The values for the num- 
ber of favorable nucleation sites, N, and bubble 
departure frequencyfwere borrowed from the htera- 
ture of boiling heat transfer. In particular, 

N = 100,000 sitesm-’ and SD, = O.O6ms-’ were 
estimated from refs. [6,7] for the present calculations. 

Also shown on Figs. 10 and 11 are the thermodyn- 
amic equilibrium curves. It is observed from these 
two figures that for an inlet void fraction of 0.07, 
the void fraction for the five-stage reverse pump is 
everywhere below the thermodynamic equilibrium 
value but that the two values are very close at the 
exit. In contrast, the void fraction for the single stage 
machine is well below the thermodynamic equilibrium 
value and remains so throughout the flow passage. 
The main reasons are the smaller residence time and 
solid surface area in the single stage turbine. 

6. CONCLUSIONS 

(1) A theoretical model, based on an integral method 
of solution of the basic conservation equations, has 
been shown to predict results that are in very good 
agreement with experimentally measured values of 
mass transfer-controlled bubble growth. 

(2) The model may be combined with suitable 
bubble nucleation and two-phase flow models to 
estimate the void fraction in two-phase flow passages. 
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CROISSANCE DE BULLE CONTROLEE PAR LE TRANSFERT MASSIQUE PENDANT 
LA RAPIDE DECOMPRESSION D’UN LIQUIDE 

R&urn&-On prksente une analyse bake sur we mtthode intigrale pour la croissance d’une bulle contr%e 

par le transfert massique pendant la d&compression brutale d’une solution de gaz dans un liquide. Les 
risultats du calcul sont en tris bon accord avec les mesures expCrimenta!es faites sur une solution alcool 
Cthylique-COz B 25’C et des pressions initiales entre 0,44 et I,12 MPa. On donne un moyen de combiner 
le modtle croissance de bulle avec un modtle de nuclkation de bulle pour prtdire les fractions de vide dans 
des tcoulements diphasiques B passage unidirectionnel. Des rCsultats pour la croissance de bulle et le calcul 
de fraction de vide sont prksentts concernant la solution monoCthanolamine_CO? g une pression initiale 

de 8,8 MPa et lSO”C, & travers une turbine B un seul itage et une pompe B cinq itages. 

STOFF~B~RGANGSKONTROLLIERTES BLASENWACHSTUM W~HREND DER 
SCHNELLEN ENTSPANNUNG EINER FLilSSIGKEIT 

Zusammenfassung-Eine auf der Integralmethode basierende analytische Liisung fiir das stoff- 
iibergangskontrollierte Blasenwachstum wtihrend schneller Entspannung einer Fliissigkeits-Gas-Lisung 
wird vorgestellt. Die berechneten Werte stimmen sehr gut mit MeRergebnissen von Ethylalkohol-COz- 
Liisungen bei 2S’C und Anfangsdrlcken von 0,44 bis I,l2MPa iiberein. Es wird ein Ausblick gegeben, 
wie das Blasenwachstumsmodell mit einem Blasenkeimmodell kombiniert werden kann, urn Gasgehalte in 
eindimensionalen zweiphasigen StrGmungsabschnitten zu berechnen. Spezielle Berechnungen von 
Blasenwachstum und Gasgehalt fiir Striimungen von Monoethanolamin-CO>-LGsungen mit einem 
Anfangsdruck von 8,8 MPa und 150°C durch eine einstufige Turbine und durch eine fiinfstufige umgekehrte 

Pumpe werden vorgestellt. 

KOHT~~~PYEMbI~ MACCO~EPEHOCOM POCT ~Y3bIPbKOB nPR PE3KOM 
CHMXEHMM ~AB~EH~~ B XH~KOCTM 

Atmoraumt-PeweHKe Xlla’K(M KOH~pOAHpyeMOrO MaCCOnep’ZHOCOM pOCTa ny3blpbKOB npe pe3KOM CHU- 

xeHm.4 Aaenewn 8 CMecH WmKocTb-ra3 aBanM3spyexR Ha 0cHoaaHnW aHTerpanbBor0 MeTona. IIpenc- 
TaBneHHble pe3yJlbTaTbI pacqe-ra xopomo cornacymolcn c 3KCnepBMeHTaJlbHbIMH u3Mepeminwi, 

npOBeAeHHbIMH C paCTBOpOM JTAJlOBOrO CnspTa-CO, npH 25°C U HaYaJlbHOM AaBJleHHA OT o,‘t4 A0 1,12 
Mlla. OnHcaH cnocod o6oBmeHafl Moneneii pocTa ny3brpbra u. saponbuue o6pa3osaHwn nnn pacqe’ra 
ACTHHHO~O o6beMHoro napoconepxamin a 0nHohiepHoM Aayx@a3noM TeYeHmi a KaHanax. Ilpenc-raa- 

ReHbl XapaIUepHble pe3ynbTaTbI pOCTa ny3bIpbKOB U paC’ieTb1 kiCTHHHOr0 o6aeMHoro napOCOAep~aHWl 

IINI Te’leHHR CMeCH MOH03TaHOJlaMllH-C02 npu. Ha’lanbHOM AaBJleHRH 8,s MIIa U TeMnepaType 150°C B 

OAHOCTyIleH’iaTOf Typ6HHe W nKTFiCTyneH’iaTOh4 peBepCHBHOM HaCOCe. 


